Estimates a sparse inverse covariance matrix using a lasso (L1) penalty.
Arguments
- S
Required. A symetric p-by-p covariance matrix.
- rankedEdges
Required. A list of ranked edges to be constrained by zero.
Value
A list with components.
`w` Estimated inverse covariance matrix.
`loglik` Value of maximized log-likelihodo+penalty.
`errflag` Memory allocation error flag: 0 means no error; !=0 means memory allocation error - no output returned.
`approx` Value of input argument approx.
`del` Change in parameter value at convergence.
`niter` Number of iterations of outer loop used by algorithm.