Covariance Selection with Bisection Optimization
Source:R/covarianceSelectionBisection.R
covarianceSelectionBisection.Rd
Selects an optimal covariance matrix through BIC convergence.
Usage
covarianceSelectionBisection(
S,
rankedEdges,
numberObservations,
lowerBoundEdge,
upperBoundEdge
)
Arguments
- S
Required. A symetric p-by-p covariance matrix.
- rankedEdges
Required. A list of ranked edges to be constrained by zero.
- numberObservations
Required. Number of observations used to calculate BIC estimates.
- lowerBoundEdge
Required. Numeric specifying the lower bound number of parameters (d) in BIC calculation: `BIC = -2 * loglikelihood + d * log(N)`
- upperBoundEdge
Required. Numeric specifying the upper bound number of parameters (d) in BIC calculation: `BIC = -2 * loglikelihood + d * log(N)`