Skip to contents

This function iteratively wraps a function that a tries to find densely connected subgraphs in a graph by calculating the leading non-negative eigenvector of the modularity matrix of the graph.

Usage

findModules.leading_eigen(adj, nperm = 10, min.module.size = 30)

Arguments

adj

A n x n upper triangular adjacency in the matrix class format.

nperm

Optional. Number of permutation on the gene ordering. (Default = 10)

min.module.size

Optional. Integer between 1 and n genes. (Default = 30)

Value

GeneModules = n x 3 dimensional data frame with column names as Gene.ID, moduleNumber, and moduleLabel.