Skip to contents

This function finds modules from network adjacency matrix using MEGENA.

Usage

findModules.megena(
  data,
  method = "pearson",
  FDR.cutoff = 0.05,
  module.pval = 0.05,
  hub.pval = 0.05,
  doPar = TRUE,
  n.cores = NULL,
  cor.perm = 10,
  hub.perm = 100,
  min_module = 30
)

Arguments

data

Required. An n x n upper triangular adjacency in the matrix class format.

method

Optional. Method for correlation. either pearson or spearman. (Default = "pearson")

FDR.cutoff

Optional. FDR threshold to define significant correlations upon shuffling samples. (Default = 0.05)

module.pval

Optional. Module significance p-value. Recommended is 0.05. (Default = 0.05)

hub.pval

Optional. Connectivity significance p-value based random tetrahedral networks. (Default = 0.05)

doPar

Optional. If parallelization of clusters is allowed (Default =TRUE)

n.cores

Optional. The number of cores/threads to call for PCP. If NULL, n.cores = detectCores() - 1. (Default = NULL)

cor.perm

Optional. Number of permutations for calculating FDRs for all correlation pairs. (Default = 10)

hub.perm

Optional. number of permutations for calculating connectivity significance p-value. (Default = 100)

min_module

Optional. minimum number of nodes/genes allowed for filtering (Default = 30)

Value

GeneModules = n x 3 dimensional data frame with column names as Gene.ID, moduleNumber, and moduleLabel.