Skip to content

Database to Staging

genie.database_to_staging

Functions for releasing GENIE consortium releases

Attributes

logger = logging.getLogger(__name__) module-attribute

GENIE_RELEASE_DIR = os.path.join(os.path.expanduser('~/.synapseCache'), 'GENIE_release') module-attribute

CASE_LIST_PATH = os.path.join(GENIE_RELEASE_DIR, 'case_lists') module-attribute

CNA_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_CNA_%s.txt') module-attribute

SAMPLE_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_clinical_supp_sample_%s.txt') module-attribute

PATIENT_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_clinical_supp_patient_%s.txt') module-attribute

MUTATIONS_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_mutations_extended_%s.txt') module-attribute

FUSIONS_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_fusions_%s.txt') module-attribute

SEG_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_cna_hg19_%s.seg') module-attribute

SV_CENTER_PATH = os.path.join(GENIE_RELEASE_DIR, 'data_sv_%s.txt') module-attribute

BED_DIFFS_SEQASSAY_PATH = os.path.join(GENIE_RELEASE_DIR, 'diff_%s.csv') module-attribute

FULL_MAF_RELEASE_COLUMNS = ['Hugo_Symbol', 'Entrez_Gene_Id', 'Center', 'NCBI_Build', 'Chromosome', 'Start_Position', 'End_Position', 'Strand', 'Consequence', 'Variant_Classification', 'Variant_Type', 'Reference_Allele', 'Tumor_Seq_Allele1', 'Tumor_Seq_Allele2', 'dbSNP_RS', 'dbSNP_Val_Status', 'Tumor_Sample_Barcode', 'Matched_Norm_Sample_Barcode', 'Match_Norm_Seq_Allele1', 'Match_Norm_Seq_Allele2', 'Tumor_Validation_Allele1', 'Tumor_Validation_Allele2', 'Match_Norm_Validation_Allele1', 'Match_Norm_Validation_Allele2', 'Verification_Status', 'Validation_Status', 'Mutation_Status', 'Sequencing_Phase', 'Sequence_Source', 'Validation_Method', 'Score', 'BAM_File', 'Sequencer', 't_ref_count', 't_alt_count', 'n_ref_count', 'n_alt_count', 'HGVSc', 'HGVSp', 'HGVSp_Short', 'Transcript_ID', 'RefSeq', 'Protein_position', 'Codons', 'Exon_Number', 'gnomAD_AF', 'gnomAD_AFR_AF', 'gnomAD_AMR_AF', 'gnomAD_ASJ_AF', 'gnomAD_EAS_AF', 'gnomAD_FIN_AF', 'gnomAD_NFE_AF', 'gnomAD_OTH_AF', 'gnomAD_SAS_AF', 'FILTER', 'Polyphen_Prediction', 'Polyphen_Score', 'SIFT_Prediction', 'SIFT_Score', 'SWISSPROT', 'n_depth', 't_depth', 'Annotation_Status', 'mutationInCis_Flag'] module-attribute

Functions

_to_redact_interval(df_col)

Determines interval values that are <18 and >89 that need to be redacted Returns bool because BIRTH_YEAR needs to be redacted as well based on the results

PARAMETER DESCRIPTION
df_col

Dataframe column/pandas.Series of an interval column

RETURNS DESCRIPTION
tuple

pandas.Series: to redact boolean vector pandas.Series: to redact pediatric boolean vector

Source code in genie/database_to_staging.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
def _to_redact_interval(df_col):
    """
    Determines interval values that are <18 and >89 that need to be redacted
    Returns bool because BIRTH_YEAR needs to be redacted as well based
    on the results

    Args:
        df_col: Dataframe column/pandas.Series of an interval column

    Returns:
        tuple: pandas.Series: to redact boolean vector
               pandas.Series: to redact pediatric boolean vector

    """
    phi_cutoff = 365 * 89
    pediatric_cutoff = 365 * 18
    # Some centers pre-redact their values by adding < or >. These
    # must be redacted
    contain_greaterthan = df_col.astype(str).str.contains(">", na=False)
    contain_lessthan = df_col.astype(str).str.contains("<", na=False)
    # Add in errors='coerce' to turn strings into NaN
    col_int = pd.to_numeric(df_col, errors="coerce")
    to_redact = (col_int > phi_cutoff) | contain_greaterthan
    to_redact_pediatric = (col_int < pediatric_cutoff) | contain_lessthan
    return to_redact, to_redact_pediatric

_redact_year(df_col)

Redacts year values that have < or >

PARAMETER DESCRIPTION
df_col

Dataframe column/pandas.Series of a year column

RETURNS DESCRIPTION

pandas.Series: Redacted series

Source code in genie/database_to_staging.py
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
def _redact_year(df_col):
    """Redacts year values that have < or >

    Args:
        df_col: Dataframe column/pandas.Series of a year column

    Returns:
        pandas.Series: Redacted series

    """
    year = df_col.astype(str)
    contain_greaterthan = year.str.contains(">", na=False)
    contain_lessthan = year.str.contains("<", na=False)
    df_col[contain_greaterthan] = "cannotReleaseHIPAA"
    df_col[contain_lessthan] = "withheld"
    return df_col

_to_redact_difference(df_col_year1, df_col_year2)

Determine if difference between year2 and year1 is > 89

PARAMETER DESCRIPTION
df_col_year1

Dataframe column/pandas.Series of a year column

df_col_year2

Dataframe column/pandas.Series of a year column

RETURNS DESCRIPTION

pandas.Series: to redact boolean vector

Source code in genie/database_to_staging.py
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def _to_redact_difference(df_col_year1, df_col_year2):
    """Determine if difference between year2 and year1 is > 89

    Args:
        df_col_year1: Dataframe column/pandas.Series of a year column
        df_col_year2: Dataframe column/pandas.Series of a year column

    Returns:
        pandas.Series: to redact boolean vector

    """
    # Add in errors='coerce' to turn strings into NaN
    year1 = pd.to_numeric(df_col_year1, errors="coerce")
    year2 = pd.to_numeric(df_col_year2, errors="coerce")
    to_redact = year2 - year1 > 89
    return to_redact

redact_phi(clinicaldf, interval_cols_to_redact=['AGE_AT_SEQ_REPORT', 'INT_CONTACT', 'INT_DOD'])

Redacts the PHI by re-annotating the clinical file

PARAMETER DESCRIPTION
clinicaldf

merged clinical dataframe

interval_cols_to_redact

List of interval columns to redact. Defaults to ['AGE_AT_SEQ_REPORT', 'INT_CONTACT', 'INT_DOD']

DEFAULT: ['AGE_AT_SEQ_REPORT', 'INT_CONTACT', 'INT_DOD']

RETURNS DESCRIPTION

pandas.DataFrame: Redacted clinical dataframe

Source code in genie/database_to_staging.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
def redact_phi(
    clinicaldf, interval_cols_to_redact=["AGE_AT_SEQ_REPORT", "INT_CONTACT", "INT_DOD"]
):
    """Redacts the PHI by re-annotating the clinical file

    Args:
        clinicaldf: merged clinical dataframe
        interval_cols_to_redact: List of interval columns to redact.
                                 Defaults to ['AGE_AT_SEQ_REPORT',
                                              'INT_CONTACT',
                                              'INT_DOD']

    Returns:
        pandas.DataFrame: Redacted clinical dataframe

    """
    # Moved to cannotReleaseHIPAA and withheld because the HIPAA
    # years would change every single year. (e.g. <1926, >1998 would be
    # inaccurate every year)
    for col in interval_cols_to_redact:
        to_redact, to_redactpeds = _to_redact_interval(clinicaldf[col])
        clinicaldf.loc[to_redact, "BIRTH_YEAR"] = "cannotReleaseHIPAA"
        clinicaldf.loc[to_redact, col] = ">32485"
        clinicaldf.loc[to_redactpeds, "BIRTH_YEAR"] = "withheld"
        clinicaldf.loc[to_redactpeds, col] = "<6570"
    # Redact BIRTH_YEAR values that have < or >
    # Birth year has to be done separately because it is not an interval
    clinicaldf["BIRTH_YEAR"] = _redact_year(clinicaldf["BIRTH_YEAR"])
    to_redact = _to_redact_difference(
        clinicaldf["BIRTH_YEAR"], clinicaldf["YEAR_CONTACT"]
    )
    clinicaldf.loc[to_redact, "BIRTH_YEAR"] = "cannotReleaseHIPAA"
    to_redact = _to_redact_difference(
        clinicaldf["BIRTH_YEAR"], clinicaldf["YEAR_DEATH"]
    )
    clinicaldf.loc[to_redact, "BIRTH_YEAR"] = "cannotReleaseHIPAA"

    return clinicaldf

remove_maf_samples(mafdf, keep_samples)

Remove samples from maf file

PARAMETER DESCRIPTION
mafdf

Maf dataframe

TYPE: DataFrame

keep_samples

Samples to keep

TYPE: list

RETURNS DESCRIPTION
DataFrame

Filtered maf dataframe

Source code in genie/database_to_staging.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
def remove_maf_samples(mafdf: pd.DataFrame, keep_samples: list) -> pd.DataFrame:
    """Remove samples from maf file

    Args:
        mafdf: Maf dataframe
        keep_samples: Samples to keep

    Returns:
        Filtered maf dataframe

    """
    keep_maf = mafdf["Tumor_Sample_Barcode"].isin(keep_samples)
    mafdf = mafdf.loc[keep_maf,]
    return mafdf

get_whitelist_variants_idx(mafdf)

Get boolean vector for variants that are known somatic sites This is to override the germline filter

Source code in genie/database_to_staging.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
def get_whitelist_variants_idx(mafdf):
    """Get boolean vector for variants that are known somatic sites
    This is to override the germline filter
    """
    columns = ["Chromosome", "Start", "End", "Symbol"]
    whitelist = pd.read_csv(
        "https://raw.githubusercontent.com/mskcc/vcf2maf/v1.6.19/data/known_somatic_sites.bed",
        sep="\t",
        comment="#",
        header=None,
        names=columns,
    )
    rangesdf = mafdf[
        ["Chromosome", "Start_Position", "End_Position", "Hugo_Symbol", "HGVSp_Short"]
    ]
    rangesdf = rangesdf.rename(
        columns={"Start_Position": "Start", "End_Position": "End"}
    )
    maf_ranges = pyranges.PyRanges(rangesdf)
    whitelist_ranges = pyranges.PyRanges(whitelist)
    whitelisted_variants = maf_ranges.intersect(whitelist_ranges, how="containment")
    whitelist_variantsdf = whitelisted_variants.as_df()
    if not whitelist_variantsdf.empty:
        variants = (
            whitelist_variantsdf["Hugo_Symbol"]
            + " "
            + whitelist_variantsdf["HGVSp_Short"]
        )
    else:
        variants = []
    maf_variants = mafdf["Hugo_Symbol"] + " " + mafdf["HGVSp_Short"]
    # For some reason intersect and overlap doesn't work when
    # Start and End are the same. Here is an example that won't be
    # matched by the intersect function
    # variant: chr9-10-10
    # Bed: chr9-9-10
    match_start_end = mafdf["Start_Position"].isin(whitelist["Start"]) | mafdf[
        "End_Position"
    ].isin(whitelist["End"])
    return maf_variants.isin(variants) | match_start_end

configure_maf(mafdf, remove_variants, flagged_variants)

Configures each maf dataframe, does germline filtering

Germline filtering for MAF files uses the gnomAD columns that refer to the allele frequencies (AF) of variants in different population groups from the gnomAD (Genome Aggregation Database). This filter will filter out variants with a maximum AF > 0.05% across all populations which are typically common germline variants.

Germline filtering for MAF files occurs during release instead of during processing because the MAF file gets re-annotated during processing via genome nexus annotation.

PARAMETER DESCRIPTION
mafdf

Maf dataframe

remove_variants

Variants to remove

flagged_variants

Variants to flag

RETURNS DESCRIPTION

configured maf row

Source code in genie/database_to_staging.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def configure_maf(mafdf, remove_variants, flagged_variants):
    """Configures each maf dataframe, does germline filtering

    Germline filtering for MAF files uses the gnomAD columns that refer to the
    allele frequencies (AF) of variants in different population groups
    from the gnomAD (Genome Aggregation Database). This filter will filter out
    variants with a maximum AF > 0.05% across all populations which are typically
    common germline variants.

    Germline filtering for MAF files occurs during release instead of during processing
    because the MAF file gets re-annotated during processing via genome nexus annotation.

    Args:
        mafdf: Maf dataframe
        remove_variants: Variants to remove
        flagged_variants: Variants to flag

    Returns:
        configured maf row
    """
    variant = mafdf[
        [
            "Chromosome",
            "Start_Position",
            "End_Position",
            "Reference_Allele",
            "Tumor_Seq_Allele2",
            "Tumor_Sample_Barcode",
        ]
    ].apply(lambda x: " ".join(x.map(str)), axis=1)
    mergecheck_variant = mafdf[
        [
            "Chromosome",
            "Start_Position",
            "HGVSp_Short",
            "Reference_Allele",
            "Tumor_Seq_Allele2",
            "Tumor_Sample_Barcode",
        ]
    ].apply(lambda x: " ".join(x.map(str)), axis=1)

    # Flag mutation in cis variants
    mafdf["mutationInCis_Flag"] = mergecheck_variant.isin(flagged_variants)
    # Remove common variants
    # na=False to resolve this linked error
    # https://stackoverflow.com/questions/52297740
    # common_variants = mafdf['FILTER'].astype(str).str.contains(
    #     "common_variant", na=False
    # )
    # Germline Filter
    gnomad_cols = [
        "gnomAD_AFR_AF",
        "gnomAD_AMR_AF",
        "gnomAD_ASJ_AF",
        "gnomAD_EAS_AF",
        "gnomAD_FIN_AF",
        "gnomAD_NFE_AF",
        "gnomAD_OTH_AF",
        "gnomAD_SAS_AF",
    ]
    # location of germline variants
    common_variants_idx = mafdf.loc[:, gnomad_cols].max(axis=1, skipna=True) > 0.0005

    # Remove specific variants
    to_remove_variants = variant.isin(remove_variants)
    # Genome Nexus successfully annotated (vcf2maf does not have this column)
    if mafdf.get("Annotation_Status") is None:
        mafdf["Annotation_Status"] = "SUCCESS"
    # Make sure to only get variants that were successfully annotated
    success = mafdf["Annotation_Status"] == "SUCCESS"
    # Get whitelisted variants
    whitelist_variants_idx = get_whitelist_variants_idx(mafdf)
    mafdf = mafdf.loc[
        (
            (~common_variants_idx | whitelist_variants_idx)
            & ~to_remove_variants
            & success
        ),
    ]
    # May not need to do this because these columns are always
    # returned as numerical values now
    # fillnas = ['t_depth', 't_ref_count', 't_alt_count',
    #            'n_depth', 'n_ref_count', 'n_alt_count']
    # for col in fillnas:
    #     mafdf[col][mafdf[col].astype(str) == "."] = float('nan')
    n_depth_ind = mafdf["n_depth"].astype(str).isin(["NA", "0.0", "0", "nan"])
    mafdf.loc[n_depth_ind, "Match_Norm_Seq_Allele2"] = ""
    mafdf.loc[n_depth_ind, "Match_Norm_Seq_Allele1"] = ""
    # Calculate missing t_depth, t_ref_count, t_alt_count
    t_counts = calculate_missing_variant_counts(
        depth=mafdf["t_depth"],
        alt_count=mafdf["t_alt_count"],
        ref_count=mafdf["t_ref_count"],
    )
    mafdf["t_depth"] = t_counts["depth"]
    mafdf["t_ref_count"] = t_counts["ref_count"]
    mafdf["t_alt_count"] = t_counts["alt_count"]
    # Calculate missing n_depth, n_ref_count, n_alt_count
    n_counts = calculate_missing_variant_counts(
        depth=mafdf["n_depth"],
        alt_count=mafdf["n_alt_count"],
        ref_count=mafdf["n_ref_count"],
    )
    mafdf["n_depth"] = n_counts["depth"]
    mafdf["n_ref_count"] = n_counts["ref_count"]
    mafdf["n_alt_count"] = n_counts["alt_count"]

    return mafdf

calculate_missing_variant_counts(depth, alt_count, ref_count)

Calculate missing counts. t_depth = t_alt_count + t_ref_count

PARAMETER DESCRIPTION
depth

Allele Depth

TYPE: Series

alt_count

Allele alt counts

TYPE: Series

ref_count

Allele ref counts

TYPE: Series

RETURNS DESCRIPTION
dict

filled in depth, alt_count and ref_count values

Source code in genie/database_to_staging.py
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
def calculate_missing_variant_counts(
    depth: pd.Series, alt_count: pd.Series, ref_count: pd.Series
) -> dict:
    """Calculate missing counts. t_depth = t_alt_count + t_ref_count

    Args:
        depth: Allele Depth
        alt_count: Allele alt counts
        ref_count: Allele ref counts

    Returns:
        filled in depth, alt_count and ref_count values

    """
    # Avoid SettingWithCopyWarning
    depth = depth.copy()
    alt_count = alt_count.copy()
    ref_count = ref_count.copy()
    # t_depth = t_ref_count + t_alt_count
    null_depth = depth.isnull()
    # The notation null_depth_ref means all the reference values for which
    # depth is NA
    null_depth_ref = ref_count[null_depth]
    null_depth_alt = alt_count[null_depth]
    depth.loc[null_depth] = null_depth_ref + null_depth_alt
    # t_ref_count = t_depth - t_alt_count
    null_ref = ref_count.isnull()
    null_ref_depth = depth[null_ref]
    null_ref_alt = alt_count[null_ref]
    ref_count[null_ref] = null_ref_depth - null_ref_alt
    # t_alt_count = t_depth - t_ref_count
    null_alt = alt_count.isnull()
    null_alt_depth = depth[null_alt]
    null_alt_ref = ref_count[null_alt]
    alt_count[null_alt] = null_alt_depth - null_alt_ref
    return {"depth": depth, "ref_count": ref_count, "alt_count": alt_count}

runMAFinBED(syn, center_mappingdf, test=False, genieVersion='test')

Run MAF in BED script, filter data and update MAFinBED database

PARAMETER DESCRIPTION
syn

Synapse object

center_mappingdf

center mapping dataframe

test

Testing parameter. Default is False.

DEFAULT: False

genieVersion

GENIE version. Default is test.

DEFAULT: 'test'

RETURNS DESCRIPTION

pd.Series: Variants to remove

Source code in genie/database_to_staging.py
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
def runMAFinBED(syn, center_mappingdf, test=False, genieVersion="test"):
    """
    Run MAF in BED script, filter data and update MAFinBED database

    Args:
        syn: Synapse object
        center_mappingdf: center mapping dataframe
        test: Testing parameter. Default is False.
        genieVersion: GENIE version. Default is test.

    Returns:
        pd.Series: Variants to remove
    """
    script_dir = os.path.dirname(os.path.abspath(__file__))
    mafinbed_script = os.path.join(script_dir, "../R/MAFinBED.R")
    # TODO: Use tempfile
    notinbed_file = os.path.join(script_dir, "../R/notinbed.csv")
    # The MAFinBED script filters out the centers that aren't being processed
    command = ["Rscript", mafinbed_script, notinbed_file]
    if test:
        command.append("--testing")
    subprocess.check_call(command)

    # mutationSynId = databaseSynIdMappingDf['Id'][
    #     databaseSynIdMappingDf['Database'] == "vcf2maf"][0]
    # removedVariants = syn.tableQuery(
    #     "select Chromosome, Start_Position, End_Position, Reference_Allele, "
    #     "Tumor_Seq_Allele2, Tumor_Sample_Barcode, Center from {} where inBED"
    #     " is False and Center in ('{}')".format(
    #         mutationSynId, "','".join(center_mappingdf.center)))
    # removedVariantsDf = removedVariants.asDataFrame()
    removed_variantsdf = pd.read_csv(notinbed_file)
    removed_variantsdf["removeVariants"] = (
        removed_variantsdf["Chromosome"].astype(str)
        + " "
        + removed_variantsdf["Start_Position"].astype(str)
        + " "
        + removed_variantsdf["End_Position"].astype(str)
        + " "
        + removed_variantsdf["Reference_Allele"].astype(str)
        + " "
        + removed_variantsdf["Tumor_Seq_Allele2"].astype(str)
        + " "
        + removed_variantsdf["Tumor_Sample_Barcode"].astype(str)
    )
    # Store filtered variants
    for center in removed_variantsdf["Center"].unique():
        center_mutation = removed_variantsdf[removed_variantsdf["Center"] == center]
        # mafText = process.removePandasDfFloat(center_mutation)
        center_mutation.to_csv("mafinbed_filtered_variants.csv", index=False)
        load.store_file(
            syn=syn,
            filepath="mafinbed_filtered_variants.csv",
            parentid=center_mappingdf["stagingSynId"][
                center_mappingdf["center"] == center
            ][0],
            version_comment=genieVersion,
        )
        os.unlink("mafinbed_filtered_variants.csv")
    return removed_variantsdf["removeVariants"]

seq_date_filter(clinicalDf, processingDate, consortiumReleaseCutOff)

Filter samples by seq date

PARAMETER DESCRIPTION
clinicalDf

Clinical dataframe

processingDate

Processing date in form of Apr-XXXX

consortiumReleaseCutOff

Release cut off days

RETURNS DESCRIPTION
list

Samples to remove

Source code in genie/database_to_staging.py
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
def seq_date_filter(clinicalDf, processingDate, consortiumReleaseCutOff):
    """
    Filter samples by seq date

    Args:
        clinicalDf: Clinical dataframe
        processingDate: Processing date in form of Apr-XXXX
        consortiumReleaseCutOff: Release cut off days

    Returns:
        list: Samples to remove
    """
    removeSeqDateSamples = process_functions.seqDateFilter(
        clinicalDf, processingDate, consortiumReleaseCutOff
    )
    return removeSeqDateSamples

mutation_in_cis_filter(syn, skipMutationsInCis, variant_filtering_synId, center_mappingdf, genieVersion, test=False)

Run mutation in cis filter, look up samples to remove

PARAMETER DESCRIPTION
syn

Synapse object

skipMutationsInCis

Skip this filter

variant_filtering_synId

mergeCheck database dataframe

center_mappingdf

center mapping dataframe

genieVersion

GENIE version. Default is test.

test

Testing parameter. Default is False.

DEFAULT: False

RETURNS DESCRIPTION

pd.Series: Samples to remove

Source code in genie/database_to_staging.py
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
def mutation_in_cis_filter(
    syn,
    skipMutationsInCis,
    variant_filtering_synId,
    center_mappingdf,
    genieVersion,
    test=False,
):
    """
    Run mutation in cis filter, look up samples to remove

    Args:
        syn: Synapse object
        skipMutationsInCis: Skip this filter
        variant_filtering_synId: mergeCheck database dataframe
        center_mappingdf: center mapping dataframe
        genieVersion: GENIE version. Default is test.
        test: Testing parameter. Default is False.

    Returns:
        pd.Series: Samples to remove
    """
    if not skipMutationsInCis:
        mergeCheck_script = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "../R/mergeCheck.R"
        )
        command = ["Rscript", mergeCheck_script]
        if test:
            command.append("--testing")
        # TODO: use subprocess.run instead
        subprocess.check_call(command)
        # Store each centers mutations in cis to their staging folder
        center_str = "','".join(center_mappingdf.center)
        query_str = (
            f"select * from {variant_filtering_synId} where Center in ('{center_str}')"
        )
        mergeCheckDf = extract.get_syntabledf(syn=syn, query_string=query_str)
        for center in mergeCheckDf.Center.unique():
            if not pd.isnull(center):
                stagingSynId = center_mappingdf.stagingSynId[
                    center_mappingdf["center"] == center
                ]
                mergeCheckDf[mergeCheckDf["Center"] == center].to_csv(
                    "mutationsInCis_filtered_samples.csv", index=False
                )
                load.store_file(
                    syn=syn,
                    filepath="mutationsInCis_filtered_samples.csv",
                    parentid=stagingSynId[0],
                    version_comment=genieVersion,
                )
                os.unlink("mutationsInCis_filtered_samples.csv")
    query_str = (
        f"SELECT Tumor_Sample_Barcode FROM {variant_filtering_synId} where "
        "Flag = 'TOSS' and Tumor_Sample_Barcode is not null"
    )
    filtered_samplesdf = extract.get_syntabledf(syn=syn, query_string=query_str)
    # #Alex script #1 removed patients
    remove_samples = filtered_samplesdf["Tumor_Sample_Barcode"].drop_duplicates()

    query_str = (
        f"SELECT * FROM {variant_filtering_synId} where "
        "Flag = 'Flag' and Tumor_Sample_Barcode is not null"
    )
    flag_variantsdf = extract.get_syntabledf(syn=syn, query_string=query_str)

    flag_variantsdf["flaggedVariants"] = (
        flag_variantsdf["Chromosome"].astype(str)
        + " "
        + flag_variantsdf["Start_Position"].astype(str)
        + " "
        + flag_variantsdf["HGVSp_Short"].astype(str)
        + " "
        + flag_variantsdf["Reference_Allele"].astype(str)
        + " "
        + flag_variantsdf["Tumor_Seq_Allele2"].astype(str)
        + " "
        + flag_variantsdf["Tumor_Sample_Barcode"].astype(str)
    )
    return (remove_samples, flag_variantsdf["flaggedVariants"])

seq_assay_id_filter(clinicaldf)

(Deprecated) Remove samples that are part of SEQ_ASSAY_IDs with less than 50 samples

PARAMETER DESCRIPTION
clinicalDf

Sample clinical dataframe

RETURNS DESCRIPTION

pd.Series: samples to remove

Source code in genie/database_to_staging.py
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
def seq_assay_id_filter(clinicaldf):
    """
    (Deprecated)
    Remove samples that are part of SEQ_ASSAY_IDs with less
    than 50 samples

    Args:
        clinicalDf: Sample clinical dataframe

    Returns:
        pd.Series: samples to remove
    """
    remove_seqassayid = clinicaldf["SEQ_ASSAY_ID"].value_counts()[
        clinicaldf["SEQ_ASSAY_ID"].value_counts() < 50
    ]
    clinicaldf = clinicaldf[
        clinicaldf["SEQ_ASSAY_ID"].isin(remove_seqassayid.keys().values)
    ]
    return clinicaldf["SAMPLE_ID"]

no_genepanel_filter(clinicaldf, beddf)

Remove samples that don't have bed files associated with them

PARAMETER DESCRIPTION
clinicaldf

Clinical data

beddf

bed data

RETURNS DESCRIPTION

pd.Series: samples to remove

Source code in genie/database_to_staging.py
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def no_genepanel_filter(clinicaldf, beddf):
    """
    Remove samples that don't have bed files associated with
    them

    Args:
        clinicaldf:  Clinical data
        beddf: bed data

    Returns:
        pd.Series: samples to remove
    """

    logger.info("NO GENE PANEL FILTER")
    has_seq_assay = clinicaldf["SEQ_ASSAY_ID"].isin(beddf["SEQ_ASSAY_ID"])
    remove_samples = clinicaldf["SAMPLE_ID"][~has_seq_assay]
    logger.info(
        "Removing samples with no bed file: {}".format(",".join(remove_samples))
    )
    return remove_samples

store_gene_panel_files(syn, fileviewSynId, genieVersion, data_gene_panel, consortiumReleaseSynId, wes_seqassayids)

Source code in genie/database_to_staging.py
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
def store_gene_panel_files(
    syn,
    fileviewSynId,
    genieVersion,
    data_gene_panel,
    consortiumReleaseSynId,
    wes_seqassayids,
):
    # Only need to upload these files once
    logger.info("STORING GENE PANELS FILES")
    wes_genepanel_filenames = [
        "data_gene_panel_{}.txt".format(seqassayid) for seqassayid in wes_seqassayids
    ]
    # Format string for tableQuery statement
    wes_genepanel_str = "','".join(wes_genepanel_filenames)
    # Only need to upload these files once
    logger.info("STORING GENE PANELS FILES")
    # This line of code is required to make sure any new files are
    # pulled into the file view.
    syn.tableQuery(f"select * from {fileviewSynId} limit 1")
    genePanelDf = extract.get_syntabledf(
        syn,
        f"select id from {fileviewSynId} where "
        "cBioFileFormat = 'genePanel' and "
        "fileStage = 'staging' and "
        f"name not in ('{wes_genepanel_str}')",
    )
    genePanelEntities = []
    panelNames = set(data_gene_panel["mutations"])
    print(f"EXISTING GENE PANELS: {','.join(panelNames)}")
    for synId in genePanelDf["id"]:
        genePanel = syn.get(synId)
        genePanelName = os.path.basename(genePanel.path)
        newGenePanelPath = os.path.join(GENIE_RELEASE_DIR, genePanelName)
        gene_panel = genePanelName.replace(".txt", "").replace("data_gene_panel_", "")
        print(gene_panel)
        if gene_panel in panelNames:
            os.rename(genePanel.path, newGenePanelPath)
            annotations = {"cBioFileFormat": "genePanel"}
            genePanelEntities.append(
                load.store_file(
                    syn=syn,
                    filepath=newGenePanelPath,
                    parentid=consortiumReleaseSynId,
                    version_comment=genieVersion,
                    name=genePanelName,
                    annotations=annotations,
                    used=f"{synId}.{genePanel.versionNumber}",
                )
            )
    return genePanelEntities

store_sv_files(syn, release_synid, genie_version, synid, keep_for_center_consortium_samples, keep_for_merged_consortium_samples, current_release_staging, center_mappingdf)

Create, filter, configure, and store structural variant file

PARAMETER DESCRIPTION
syn

Synapse object

TYPE: Synapse

release_synid

Synapse id to store release file

TYPE: str

genie_version

GENIE version (ie. v6.1-consortium)

TYPE: str

synid

SV database synid

TYPE: str

keep_for_center_consortium_samples

Samples to keep for center files

TYPE: List[str]

keep_for_merged_consortium_samples

Samples to keep for merged file

TYPE: List[str]

current_release_staging

Staging flag

TYPE: bool

center_mappingdf

Center mapping dataframe

TYPE: DataFrame

Source code in genie/database_to_staging.py
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
def store_sv_files(
    syn: synapseclient.Synapse,
    release_synid: str,
    genie_version: str,
    synid: str,
    keep_for_center_consortium_samples: List[str],
    keep_for_merged_consortium_samples: List[str],
    current_release_staging: bool,
    center_mappingdf: pd.DataFrame,
):
    """
    Create, filter, configure, and store structural variant file

    Args:
        syn: Synapse object
        release_synid: Synapse id to store release file
        genie_version: GENIE version (ie. v6.1-consortium)
        synid: SV database synid
        keep_for_center_consortium_samples: Samples to keep for center files
        keep_for_merged_consortium_samples: Samples to keep for merged file
        current_release_staging: Staging flag
        center_mappingdf: Center mapping dataframe
    """
    logger.info("MERING, FILTERING, STORING SV FILES")
    sv_df = extract.get_syntabledf(
        syn,
        f"select * from {synid}",
    )
    version = syn.create_snapshot_version(synid, comment=genie_version)

    # sv_df["ENTREZ_GENE_ID"].mask(
    #     sv_df["ENTREZ_GENE_ID"] == 0, float("nan"), inplace=True
    # )

    if not current_release_staging:
        sv_staging_df = sv_df[
            sv_df["SAMPLE_ID"].isin(keep_for_center_consortium_samples)
        ]
        for center in center_mappingdf.center:
            center_sv = sv_staging_df[sv_staging_df["CENTER"] == center]
            if not center_sv.empty:
                center_sv.to_csv(SV_CENTER_PATH % center, sep="\t", index=False)
                load.store_file(
                    syn=syn,
                    filepath=SV_CENTER_PATH % center,
                    version_comment=genie_version,
                    parentid=center_mappingdf["stagingSynId"][
                        center_mappingdf["center"] == center
                    ][0],
                )

    sv_df = sv_df[sv_df["SAMPLE_ID"].isin(keep_for_merged_consortium_samples)]
    sv_df.rename(columns=transform._col_name_to_titlecase, inplace=True)
    sv_text = process_functions.removePandasDfFloat(sv_df)
    sv_path = os.path.join(GENIE_RELEASE_DIR, "data_sv.txt")
    with open(sv_path, "w") as sv_file:
        sv_file.write(sv_text)
    load.store_file(
        syn=syn,
        filepath=sv_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_sv.txt",
        used=f"{synid}.{version}",
    )

append_or_create_release_maf(dataframe, filepath)

Creates a file with the dataframe or appends to a existing file.

PARAMETER DESCRIPTION
df

pandas.dataframe to write out

filepath

Filepath to append or create

TYPE: str

Source code in genie/database_to_staging.py
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
def append_or_create_release_maf(dataframe: pd.DataFrame, filepath: str):
    """Creates a file with the dataframe or appends to a existing file.

    Args:
        df: pandas.dataframe to write out
        filepath: Filepath to append or create

    """
    if not os.path.exists(filepath) or os.stat(filepath).st_size == 0:
        data = process_functions.removePandasDfFloat(dataframe)
        with open(filepath, "w") as f_out:
            f_out.write(data)
    else:
        data = process_functions.removePandasDfFloat(dataframe, header=False)
        with open(filepath, "a") as f_out:
            f_out.write(data)

store_maf_files(syn, genie_version, flatfiles_view_synid, release_synid, clinicaldf, center_mappingdf, keep_for_merged_consortium_samples, keep_for_center_consortium_samples, remove_mafinbed_variants, flagged_mutationInCis_variants, current_release_staging)

Create, filter, configure, and store maf file

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

flatfiles_view_synid

Synapse id of fileview with all the flat files

release_synid

Synapse id to store release file

clinicaldf

Clinical dataframe with SAMPLE_ID and CENTER

center_mappingdf

Center mapping dataframe

keep_for_merged_consortium_samples

Samples to keep for merged file

keep_for_center_consortium_samples

Samples to keep for center files

remove_mafinbed_variants

Variants to remove

flagged_mutationInCis_variants

Variants to flag

current_release_staging

Staging flag

Source code in genie/database_to_staging.py
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
def store_maf_files(
    syn,
    genie_version,
    flatfiles_view_synid,
    release_synid,
    clinicaldf,
    center_mappingdf,
    keep_for_merged_consortium_samples,
    keep_for_center_consortium_samples,
    remove_mafinbed_variants,
    flagged_mutationInCis_variants,
    current_release_staging,
):
    """
    Create, filter, configure, and store maf file

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        flatfiles_view_synid: Synapse id of fileview with all the flat files
        release_synid: Synapse id to store release file
        clinicaldf: Clinical dataframe with SAMPLE_ID and CENTER
        center_mappingdf: Center mapping dataframe
        keep_for_merged_consortium_samples: Samples to keep for merged file
        keep_for_center_consortium_samples: Samples to keep for center files
        remove_mafinbed_variants: Variants to remove
        flagged_mutationInCis_variants: Variants to flag
        current_release_staging: Staging flag
    """

    logger.info("FILTERING, STORING MUTATION FILES")
    centerMafSynIdsDf = extract.get_syntabledf(
        syn=syn,
        query_string=f"select id from {flatfiles_view_synid} where name like '%mutation%'",
    )
    mutations_path = os.path.join(GENIE_RELEASE_DIR, "data_mutations_extended.txt")
    with open(mutations_path, "w"):
        pass
    # Create maf file per center for their staging directory
    for center in clinicaldf["CENTER"].unique():
        with open(MUTATIONS_CENTER_PATH % center, "w"):
            pass
    used_entities = []
    maf_ent = syn.get(centerMafSynIdsDf.id[0])
    for _, mafSynId in enumerate(centerMafSynIdsDf.id):
        maf_ent = syn.get(mafSynId)
        logger.info(maf_ent.path)
        # Extract center name
        center = maf_ent.path.split("_")[3].replace(".txt", "")
        if center in center_mappingdf.center.tolist():
            used_entities.append(f"{maf_ent.id}.{maf_ent.versionNumber}")
            mafchunks = pd.read_csv(
                maf_ent.path, sep="\t", comment="#", chunksize=100000
            )

            for mafchunk in mafchunks:
                # Get center for center staging maf
                # Configure maf
                configured_mafdf = configure_maf(
                    mafchunk, remove_mafinbed_variants, flagged_mutationInCis_variants
                )
                configured_mafdf = configured_mafdf[FULL_MAF_RELEASE_COLUMNS]
                # Create maf for release
                merged_mafdf = remove_maf_samples(
                    configured_mafdf, keep_for_merged_consortium_samples
                )
                append_or_create_release_maf(merged_mafdf, mutations_path)
                # Create maf for center staging
                center_mafdf = remove_maf_samples(
                    configured_mafdf, keep_for_center_consortium_samples
                )
                append_or_create_release_maf(
                    center_mafdf, MUTATIONS_CENTER_PATH % center
                )

    load.store_file(
        syn=syn,
        filepath=mutations_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_mutations_extended.txt",
        used=used_entities,
    )

    if not current_release_staging:
        for center in clinicaldf["CENTER"].unique():
            staging_synid = center_mappingdf["stagingSynId"][
                center_mappingdf["center"] == center
            ][0]
            load.store_file(
                syn=syn,
                filepath=MUTATIONS_CENTER_PATH % center,
                version_comment=genie_version,
                parentid=staging_synid,
            )

run_genie_filters(syn, genie_version, variant_filtering_synId, clinicaldf, beddf, center_mappingdf, processing_date, skip_mutationsincis, consortium_release_cutoff, test)

Run GENIE filters and returns variants and samples to remove

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

variant_filtering_synId

Synapse id of mutationInCis table

clinicaldf

Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID

beddf

Bed dataframe

center_mappingdf

Center mapping dataframe

processing_date

Processing date

skip_mutationsincis

Skip mutation in cis filter

consortium_release_cutoff

Release cutoff in days

test

Test flag

RETURNS DESCRIPTION

pandas.Series: Variants to remove

set

samples to remove for release files

set

samples to remove for center files

pandas.Series: Variants to flag

Source code in genie/database_to_staging.py
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
def run_genie_filters(
    syn,
    genie_version,
    variant_filtering_synId,
    clinicaldf,
    beddf,
    center_mappingdf,
    processing_date,
    skip_mutationsincis,
    consortium_release_cutoff,
    test,
):
    """
    Run GENIE filters and returns variants and samples to remove

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        variant_filtering_synId: Synapse id of mutationInCis table
        clinicaldf: Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID
        beddf: Bed dataframe
        center_mappingdf: Center mapping dataframe
        processing_date: Processing date
        skip_mutationsincis: Skip mutation in cis filter
        consortium_release_cutoff: Release cutoff in days
        test: Test flag

    Returns:
        pandas.Series: Variants to remove
        set: samples to remove for release files
        set: samples to remove for center files
        pandas.Series: Variants to flag
    """

    # ADD CHECKS TO CODE BEFORE UPLOAD.
    # Throw error if things don't go through
    logger.info("RUN GENIE FILTERS")
    # STORING CLINICAL FILES INTO CBIOPORTAL
    # FILTERING
    logger.info("MAF IN BED FILTER")
    remove_mafinbed_variants = runMAFinBED(
        syn, center_mappingdf, test=test, genieVersion=genie_version
    )

    logger.info("MUTATION IN CIS FILTER")
    (
        remove_mutationincis_samples,
        flagged_mutationincis_variants,
    ) = mutation_in_cis_filter(
        syn,
        skip_mutationsincis,
        variant_filtering_synId,
        center_mappingdf,
        genieVersion=genie_version,
        test=test,
    )
    remove_no_genepanel_samples = no_genepanel_filter(clinicaldf, beddf)

    logger.info("SEQ DATE FILTER")
    remove_seqdate_samples = seq_date_filter(
        clinicaldf, processing_date, consortium_release_cutoff
    )

    # Only certain samples are removed for the files that go into
    # staging center folder
    remove_center_consortium_samples = set(remove_mutationincis_samples).union(
        set(remove_no_genepanel_samples)
    )
    # Most filteres are applied for the files that go into the merged
    # consortium release
    remove_merged_consortium_samples = set(remove_seqdate_samples)

    remove_merged_consortium_samples = remove_merged_consortium_samples.union(
        remove_center_consortium_samples
    )

    return (
        remove_mafinbed_variants,
        remove_merged_consortium_samples,
        remove_center_consortium_samples,
        flagged_mutationincis_variants,
    )

store_assay_info_files(syn, genie_version, assay_info_synid, clinicaldf, release_synid)

Creates, stores assay information and gets WES panel list

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

assay_info_synid

Assay information database synid

clinicaldf

Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID

release_synid

Synapse id to store release file

RETURNS DESCRIPTION

List of whole exome sequencing SEQ_ASSAY_IDs

Source code in genie/database_to_staging.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
def store_assay_info_files(
    syn, genie_version, assay_info_synid, clinicaldf, release_synid
):
    """Creates, stores assay information and gets WES panel list

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        assay_info_synid: Assay information database synid
        clinicaldf: Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID
        release_synid: Synapse id to store release file

    Returns:
        List of whole exome sequencing SEQ_ASSAY_IDs
    """
    logger.info("Creates assay information file")
    assay_info_path = os.path.join(GENIE_RELEASE_DIR, "assay_information.txt")
    seq_assay_str = "','".join(clinicaldf["SEQ_ASSAY_ID"].unique())
    version = syn.create_snapshot_version(assay_info_synid, comment=genie_version)
    assay_infodf = extract.get_syntabledf(
        syn,
        f"select * from {assay_info_synid} where SEQ_ASSAY_ID "
        f"in ('{seq_assay_str}')",
    )
    assay_infodf.to_csv(assay_info_path, sep="\t", index=False)
    load.store_file(
        syn=syn,
        filepath=assay_info_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="assay_information.txt",
        used=f"{assay_info_synid}.{version}",
    )
    wes_index = assay_infodf["library_strategy"] == "WXS"
    wes_panels = assay_infodf["SEQ_ASSAY_ID"][wes_index]
    return wes_panels.tolist()

store_clinical_files(syn, genie_version, clinicaldf, oncotree_url, sample_cols, patient_cols, remove_center_consortium_samples, remove_merged_consortium_samples, release_synid, current_release_staging, center_mappingdf, databaseSynIdMappingDf, used=None)

Create, filter, configure, and store clinical file

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

clinicaldf

Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID

oncotree_url

Oncotree URL

sample_cols

Clinical sample columns

patient_cols

Clinical patient columns

remove_center_consortium_samples

Samples to remove for center files

remove_merged_consortium_samples

Samples to remove for merged file

release_synid

Synapse id to store release file

current_release_staging

Staging flag

center_mappingdf

Center mapping dataframe

databaseSynIdMappingDf

Database to Synapse Id mapping

RETURNS DESCRIPTION

pandas.DataFrame: configured clinical dataframe

pandas.Series: samples to keep for center files

pandas.Series: samples to keep for release files

Source code in genie/database_to_staging.py
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
def store_clinical_files(
    syn,
    genie_version,
    clinicaldf,
    oncotree_url,
    sample_cols,
    patient_cols,
    remove_center_consortium_samples,
    remove_merged_consortium_samples,
    release_synid,
    current_release_staging,
    center_mappingdf,
    databaseSynIdMappingDf,
    used=None,
):
    """
    Create, filter, configure, and store clinical file

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        clinicaldf: Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID
        oncotree_url: Oncotree URL
        sample_cols: Clinical sample columns
        patient_cols: Clinical patient columns
        remove_center_consortium_samples: Samples to remove for center files
        remove_merged_consortium_samples: Samples to remove for merged file
        release_synid: Synapse id to store release file
        current_release_staging: Staging flag
        center_mappingdf: Center mapping dataframe
        databaseSynIdMappingDf: Database to Synapse Id mapping

    Returns:
        pandas.DataFrame: configured clinical dataframe
        pandas.Series: samples to keep for center files
        pandas.Series: samples to keep for release files
    """

    logger.info("CONFIGURING CLINICAL FILES")
    logger.info("REMOVING PHI")
    # clinicaldf = redact_phi(clinicaldf)
    logger.info("ADD CANCER TYPES")
    # This removes support for both oncotree urls (only support json)
    oncotree_dict = process_functions.get_oncotree_code_mappings(oncotree_url)
    # Add in unknown key which maps to UNKNOWN everything
    oncotree_dict["UNKNOWN"] = {
        "CANCER_TYPE": "UNKNOWN",
        "CANCER_TYPE_DETAILED": "UNKNOWN",
        "ONCOTREE_PRIMARY_NODE": "UNKNOWN",
        "ONCOTREE_SECONDARY_NODE": "UNKNOWN",
    }

    clinicaldf["CANCER_TYPE"] = [
        (
            oncotree_dict[code.upper()]["CANCER_TYPE"]
            if code.upper() in oncotree_dict.keys()
            else float("nan")
        )
        for code in clinicaldf["ONCOTREE_CODE"]
    ]

    clinicaldf["CANCER_TYPE_DETAILED"] = [
        (
            oncotree_dict[code.upper()]["CANCER_TYPE_DETAILED"]
            if code.upper() in oncotree_dict.keys()
            else float("nan")
        )
        for code in clinicaldf["ONCOTREE_CODE"]
    ]

    clinicaldf["ONCOTREE_PRIMARY_NODE"] = [
        (
            oncotree_dict[code.upper()]["ONCOTREE_PRIMARY_NODE"]
            if code.upper() in oncotree_dict.keys()
            else float("nan")
        )
        for code in clinicaldf["ONCOTREE_CODE"]
    ]

    clinicaldf["ONCOTREE_SECONDARY_NODE"] = [
        (
            oncotree_dict[code.upper()]["ONCOTREE_SECONDARY_NODE"]
            if code.upper() in oncotree_dict.keys()
            else float("nan")
        )
        for code in clinicaldf["ONCOTREE_CODE"]
    ]

    # All cancer types that are null contain deprecated oncotree codes
    # And should be removed
    clinicaldf = clinicaldf[~clinicaldf["CANCER_TYPE"].isnull()]
    # Suggest using AGE_AT_SEQ_REPORT_DAYS instead so that the
    # descriptions can match
    clinicaldf["AGE_AT_SEQ_REPORT_DAYS"] = clinicaldf["AGE_AT_SEQ_REPORT"]
    clinicaldf["AGE_AT_SEQ_REPORT"] = [
        (
            int(math.floor(int(float(age)) / 365.25))
            if process_functions.checkInt(age)
            else age
        )
        for age in clinicaldf["AGE_AT_SEQ_REPORT"]
    ]
    clinicaldf["AGE_AT_SEQ_REPORT"][clinicaldf["AGE_AT_SEQ_REPORT"] == ">32485"] = ">89"
    clinicaldf["AGE_AT_SEQ_REPORT"][clinicaldf["AGE_AT_SEQ_REPORT"] == "<6570"] = "<18"

    ############################################################
    # CENTER SPECIFIC CODE FOR RIGHT NOW (REMOVE UHN-555-V1)
    ############################################################
    # clinicalDf = clinicalDf[clinicalDf['SEQ_ASSAY_ID'] != "UHN-555-V1"]
    # clinicalDf = clinicalDf[clinicalDf['SEQ_ASSAY_ID'] != "PHS-TRISEQ-V1"]

    # clinicalDf = clinicalDf[clinicalDf['CENTER'] != "WAKE"]
    # clinicalDf = clinicalDf[clinicalDf['CENTER'] != "CRUK"]
    ############################################################
    ############################################################

    clinicaldf.drop_duplicates("SAMPLE_ID", inplace=True)

    logger.info("STORING CLINICAL FILES")
    # samples must be removed after reading in the clinical file again
    staging_clinicaldf = clinicaldf[
        ~clinicaldf["SAMPLE_ID"].isin(remove_center_consortium_samples)
    ]
    if not current_release_staging:
        for center in center_mappingdf.center:
            center_clinical = staging_clinicaldf[staging_clinicaldf["CENTER"] == center]
            center_sample = center_clinical[sample_cols].drop_duplicates("SAMPLE_ID")
            center_patient = center_clinical[patient_cols].drop_duplicates("PATIENT_ID")
            center_sample.to_csv(SAMPLE_CENTER_PATH % center, sep="\t", index=False)
            center_patient.to_csv(PATIENT_CENTER_PATH % center, sep="\t", index=False)
            load.store_file(
                syn=syn,
                filepath=SAMPLE_CENTER_PATH % center,
                version_comment=genie_version,
                parentid=center_mappingdf["stagingSynId"][
                    center_mappingdf["center"] == center
                ][0],
            )
            load.store_file(
                syn=syn,
                filepath=PATIENT_CENTER_PATH % center,
                version_comment=genie_version,
                parentid=center_mappingdf["stagingSynId"][
                    center_mappingdf["center"] == center
                ][0],
            )

    clinicaldf = clinicaldf[
        ~clinicaldf["SAMPLE_ID"].isin(remove_merged_consortium_samples)
    ]

    keep_center_consortium_samples = staging_clinicaldf.SAMPLE_ID
    keep_merged_consortium_samples = clinicaldf.SAMPLE_ID
    # This mapping table is the GENIE clinical code to description
    # mapping to generate the headers of the clinical file
    clinical_code_to_desc_map_synid = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "clinical_code_to_desc_map"
    ][0]
    mapping = extract.get_syntabledf(
        syn=syn, query_string=f"SELECT * FROM {clinical_code_to_desc_map_synid}"
    )
    clinical_path = os.path.join(GENIE_RELEASE_DIR, "data_clinical.txt")
    clinical_sample_path = os.path.join(GENIE_RELEASE_DIR, "data_clinical_sample.txt")
    clinical_patient_path = os.path.join(GENIE_RELEASE_DIR, "data_clinical_patient.txt")
    process_functions.addClinicalHeaders(
        clinicaldf,
        mapping,
        patient_cols,
        sample_cols,
        clinical_sample_path,
        clinical_patient_path,
    )
    load.store_file(
        syn=syn,
        filepath=clinical_sample_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_clinical_sample.txt",
        used=used,
    )

    load.store_file(
        syn=syn,
        filepath=clinical_patient_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_clinical_patient.txt",
        used=used,
    )

    clinicaldf.to_csv(clinical_path, sep="\t", index=False)
    load.store_file(
        syn=syn,
        filepath=clinical_path,
        parentid=release_synid,
        name="data_clinical.txt",
        used=used,
        version_comment="database",
    )

    return (clinicaldf, keep_center_consortium_samples, keep_merged_consortium_samples)

store_cna_files(syn, flatfiles_view_synid, keep_for_center_consortium_samples, keep_for_merged_consortium_samples, center_mappingdf, genie_version, release_synid, current_release_staging)

Create, filter and store cna file

PARAMETER DESCRIPTION
syn

Synapse object

flatfiles_view_synid

Synapse id of fileview with all the flat files

keep_for_center_consortium_samples

Samples to keep for center files

keep_for_merged_consortium_samples

Samples to keep for merged file

center_mappingdf

Center mapping dataframe

genie_version

GENIE version (ie. v6.1-consortium)

release_synid

Synapse id to store release file

Returns: list: CNA samples

Source code in genie/database_to_staging.py
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
def store_cna_files(
    syn,
    flatfiles_view_synid,
    keep_for_center_consortium_samples,
    keep_for_merged_consortium_samples,
    center_mappingdf,
    genie_version,
    release_synid,
    current_release_staging,
):
    """
    Create, filter and store cna file

    Args:
        syn: Synapse object
        flatfiles_view_synid: Synapse id of fileview with all the flat files
        keep_for_center_consortium_samples: Samples to keep for center files
        keep_for_merged_consortium_samples: Samples to keep for merged file
        center_mappingdf: Center mapping dataframe
        genie_version: GENIE version (ie. v6.1-consortium)
        release_synid: Synapse id to store release file
    Returns:
        list: CNA samples
    """
    logger.info("MERING, FILTERING, STORING CNA FILES")
    cna_path = os.path.join(GENIE_RELEASE_DIR, "data_CNA.txt")
    query_str = ("select id from {} " "where name like 'data_CNA%'").format(
        flatfiles_view_synid
    )
    center_cna_synidsdf = extract.get_syntabledf(syn, query_str)
    # Grab all unique symbols and form cna_template
    all_symbols = set()
    for cna_synid in center_cna_synidsdf["id"]:
        cna_ent = syn.get(cna_synid)
        with open(cna_ent.path, "r") as cna_file:
            # Read first line first
            cna_file.readline()
            # Get all hugo symbols
            all_symbols = all_symbols.union(
                set(line.split("\t")[0] for line in cna_file)
            )
    cna_template = pd.DataFrame({"Hugo_Symbol": list(all_symbols)})
    cna_template.sort_values("Hugo_Symbol", inplace=True)
    cna_template.to_csv(cna_path, sep="\t", index=False)
    # Loop through to create finalized CNA file
    with_center_hugo_symbol = pd.Series("Hugo_Symbol")
    with_center_hugo_symbol = pd.concat(
        [with_center_hugo_symbol, pd.Series(keep_for_center_consortium_samples)]
    )

    with_merged_hugo_symbol = pd.Series("Hugo_Symbol")
    with_merged_hugo_symbol = pd.concat(
        [with_merged_hugo_symbol, pd.Series(keep_for_merged_consortium_samples)]
    )

    cna_samples = []
    used_entities = []
    for cna_synId in center_cna_synidsdf["id"]:
        cna_ent = syn.get(cna_synId)
        center = cna_ent.name.replace("data_CNA_", "").replace(".txt", "")
        logger.info(cna_ent.path)
        if center in center_mappingdf.center.tolist():
            used_entities.append(f"{cna_synId}.{cna_ent.versionNumber}")
            center_cna = pd.read_csv(cna_ent.path, sep="\t")
            merged_cna = cna_template.merge(center_cna, on="Hugo_Symbol", how="outer")
            merged_cna.sort_values("Hugo_Symbol", inplace=True)

            if not current_release_staging:
                merged_cna = merged_cna[
                    merged_cna.columns[merged_cna.columns.isin(with_center_hugo_symbol)]
                ]

                cna_text = process_functions.removePandasDfFloat(merged_cna)
                # Replace blank with NA's
                cna_text = cna_text.replace("\t\t", "\tNA\t")
                cna_text = cna_text.replace("\t\t", "\tNA\t")
                cna_text = cna_text.replace("\t\n", "\tNA\n")

                # Store center CNA file in staging dir
                with open(CNA_CENTER_PATH % center, "w") as cna_file:
                    cna_file.write(cna_text)
                load.store_file(
                    syn=syn,
                    filepath=CNA_CENTER_PATH % center,
                    version_comment=genie_version,
                    parentid=center_mappingdf["stagingSynId"][
                        center_mappingdf["center"] == center
                    ][0],
                )
            # This is to remove more samples for the final cna file
            merged_cna = merged_cna[
                merged_cna.columns[merged_cna.columns.isin(with_merged_hugo_symbol)]
            ]

            cna_text = process_functions.removePandasDfFloat(merged_cna)
            cna_text = cna_text.replace("\t\t", "\tNA\t")
            cna_text = cna_text.replace("\t\t", "\tNA\t")
            cna_text = cna_text.replace("\t\n", "\tNA\n")

            with open(CNA_CENTER_PATH % center, "w") as cna_file:
                cna_file.write(cna_text)
            # Join CNA file
            cna_samples.extend(merged_cna.columns[1:].tolist())
            linux_join_command = ["join", cna_path, CNA_CENTER_PATH % center]
            output = subprocess.check_output(linux_join_command)
            with open(cna_path, "w") as cna_file:
                cna_file.write(output.decode("utf-8").replace(" ", "\t"))

    load.store_file(
        syn=syn,
        filepath=cna_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_CNA.txt",
        used=used_entities,
    )

    return cna_samples

store_seg_files(syn, genie_version, seg_synid, release_synid, keep_for_center_consortium_samples, keep_for_merged_consortium_samples, center_mappingdf, current_release_staging)

Create, filter and store seg file

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

seg_synid

Seg database synid

release_synid

Synapse id to store release file

keep_for_center_consortium_samples

Samples to keep for center files

keep_for_merged_consortium_samples

Samples to keep for merged file

center_mappingdf

Center mapping dataframe

current_release_staging

Staging flag

Source code in genie/database_to_staging.py
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
def store_seg_files(
    syn,
    genie_version,
    seg_synid,
    release_synid,
    keep_for_center_consortium_samples,
    keep_for_merged_consortium_samples,
    center_mappingdf,
    current_release_staging,
):
    """
    Create, filter and store seg file

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        seg_synid: Seg database synid
        release_synid: Synapse id to store release file
        keep_for_center_consortium_samples: Samples to keep for center files
        keep_for_merged_consortium_samples: Samples to keep for merged file
        center_mappingdf: Center mapping dataframe
        current_release_staging: Staging flag
    """
    logger.info("MERING, FILTERING, STORING SEG FILES")
    seg_path = os.path.join(GENIE_RELEASE_DIR, "data_cna_hg19.seg")
    version = syn.create_snapshot_version(seg_synid, comment=genie_version)

    segdf = extract.get_syntabledf(
        syn=syn,
        query_string=f"SELECT ID,CHROM,LOCSTART,LOCEND,NUMMARK,SEGMEAN,CENTER FROM {seg_synid}",
    )
    segdf = segdf.rename(
        columns={
            "CHROM": "chrom",
            "LOCSTART": "loc.start",
            "LOCEND": "loc.end",
            "SEGMEAN": "seg.mean",
            "NUMMARK": "num.mark",
        }
    )
    if not current_release_staging:
        staging_segdf = segdf[segdf["ID"].isin(keep_for_center_consortium_samples)]
        for center in center_mappingdf.center:
            center_seg = staging_segdf[staging_segdf["CENTER"] == center]
            if not center_seg.empty:
                del center_seg["CENTER"]
                segtext = process_functions.removePandasDfFloat(center_seg)
                with open(SEG_CENTER_PATH % center, "w") as seg_file:
                    seg_file.write(segtext)
                load.store_file(
                    syn=syn,
                    filepath=SEG_CENTER_PATH % center,
                    version_comment=genie_version,
                    parentid=center_mappingdf["stagingSynId"][
                        center_mappingdf["center"] == center
                    ][0],
                )
    del segdf["CENTER"]
    segdf = segdf[segdf["ID"].isin(keep_for_merged_consortium_samples)]
    segtext = process_functions.removePandasDfFloat(segdf)
    with open(seg_path, "w") as seg_file:
        seg_file.write(segtext)
    load.store_file(
        syn=syn,
        filepath=seg_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_cna_hg19.seg",
        used=f"{seg_synid}.{version}",
    )

store_data_gene_matrix(syn, genie_version, clinicaldf, cna_samples, release_synid, wes_seqassayids, used=None)

Create and store data gene matrix file

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

clinicaldf

Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID

cna_samples

Samples with CNA

release_synid

Synapse id to store release file

RETURNS DESCRIPTION

pandas.DataFrame: data gene matrix dataframe

Source code in genie/database_to_staging.py
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
def store_data_gene_matrix(
    syn,
    genie_version,
    clinicaldf,
    cna_samples,
    release_synid,
    wes_seqassayids,
    used=None,
):
    """
    Create and store data gene matrix file

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        clinicaldf: Clinical dataframe with SAMPLE_ID and SEQ_ASSAY_ID
        cna_samples: Samples with CNA
        release_synid: Synapse id to store release file

    Returns:
        pandas.DataFrame: data gene matrix dataframe
    """
    logger.info("STORING DATA GENE MATRIX FILE")
    data_gene_matrix_path = os.path.join(GENIE_RELEASE_DIR, "data_gene_matrix.txt")
    # Samples have already been removed
    data_gene_matrix = pd.DataFrame(columns=["SAMPLE_ID", "SEQ_ASSAY_ID"])
    data_gene_matrix = pd.concat(
        [data_gene_matrix, clinicaldf[["SAMPLE_ID", "SEQ_ASSAY_ID"]]]
    )
    data_gene_matrix = data_gene_matrix.rename(columns={"SEQ_ASSAY_ID": "mutations"})
    data_gene_matrix = data_gene_matrix[data_gene_matrix["SAMPLE_ID"] != ""]
    data_gene_matrix.drop_duplicates("SAMPLE_ID", inplace=True)
    # Gene panel file is written below CNA, because of the "cna" column
    # Add in CNA column into gene panel file
    cna_seqids = data_gene_matrix["mutations"][
        data_gene_matrix["SAMPLE_ID"].isin(cna_samples)
    ].unique()
    data_gene_matrix["cna"] = data_gene_matrix["mutations"]
    data_gene_matrix["cna"][~data_gene_matrix["cna"].isin(cna_seqids)] = "NA"
    wes_panel_mut = data_gene_matrix["mutations"].isin(wes_seqassayids)
    data_gene_matrix = data_gene_matrix[~wes_panel_mut]
    wes_panel_cna = data_gene_matrix["cna"].isin(wes_seqassayids)
    data_gene_matrix = data_gene_matrix[~wes_panel_cna]

    data_gene_matrix.to_csv(data_gene_matrix_path, sep="\t", index=False)

    load.store_file(
        syn=syn,
        filepath=data_gene_matrix_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="data_gene_matrix.txt",
    )
    return data_gene_matrix

store_bed_files(syn, genie_version, beddf, seq_assay_ids, center_mappingdf, current_release_staging, release_synid, used=None)

Store bed files, store the bed regions that had symbols remapped Filters bed file by clinical dataframe seq assays

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version (ie. v6.1-consortium)

beddf

Bed dataframe

seq_assay_ids

All SEQ_ASSAY_IDs in the clinical file

center_mappingdf

Center mapping dataframe

current_release_staging

Staging flag

release_synid

Synapse id to store release file

Source code in genie/database_to_staging.py
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
def store_bed_files(
    syn,
    genie_version,
    beddf,
    seq_assay_ids,
    center_mappingdf,
    current_release_staging,
    release_synid,
    used=None,
):
    """
    Store bed files, store the bed regions that had symbols remapped
    Filters bed file by clinical dataframe seq assays

    Args:
        syn: Synapse object
        genie_version: GENIE version (ie. v6.1-consortium)
        beddf: Bed dataframe
        seq_assay_ids: All SEQ_ASSAY_IDs in the clinical file
        center_mappingdf: Center mapping dataframe
        current_release_staging: Staging flag
        release_synid: Synapse id to store release file
    """
    logger.info("STORING COMBINED BED FILE")
    combined_bed_path = os.path.join(GENIE_RELEASE_DIR, "genomic_information.txt")
    if not current_release_staging:
        for seq_assay in beddf["SEQ_ASSAY_ID"].unique():
            bed_seq_df = beddf[beddf["SEQ_ASSAY_ID"] == seq_assay]
            center = seq_assay.split("-")[0]
            bed_seq_df = bed_seq_df[bed_seq_df["Hugo_Symbol"] != bed_seq_df["ID"]]
            # There should always be a match here, because there should never
            # be a SEQ_ASSAY_ID that starts without the center name
            # If there is, check the bed db for SEQ_ASSAY_ID
            center_ind = center_mappingdf["center"] == center
            if not bed_seq_df.empty:
                bed_seq_df.to_csv(BED_DIFFS_SEQASSAY_PATH % seq_assay, index=False)
                load.store_file(
                    syn=syn,
                    filepath=BED_DIFFS_SEQASSAY_PATH % seq_assay,
                    version_comment=genie_version,
                    parentid=center_mappingdf["stagingSynId"][center_ind][0],
                )
    # This clinicalDf is already filtered through most of the filters
    beddf = beddf[beddf["SEQ_ASSAY_ID"].isin(seq_assay_ids)]
    beddf.to_csv(combined_bed_path, sep="\t", index=False)
    load.store_file(
        syn=syn,
        filepath=combined_bed_path,
        parentid=release_synid,
        version_comment=genie_version,
        name="genomic_information.txt",
        used=used,
    )

stagingToCbio(syn, processingDate, genieVersion, CENTER_MAPPING_DF, databaseSynIdMappingDf, oncotree_url=None, consortiumReleaseCutOff=183, current_release_staging=False, skipMutationsInCis=False, test=False)

Main function that takes the GENIE database and creates release files

PARAMETER DESCRIPTION
syn

Synapse object

processingDate

Processing date in form of Apr-XXXX

genieVersion

GENIE version. Default is test.

CENTER_MAPPING_DF

center mapping dataframe

databaseSynIdMappingDf

Database to Synapse Id mapping

oncotree_url

Oncotree link

DEFAULT: None

consortiumReleaseCutOff

Release cut off days

DEFAULT: 183

current_release_staging

Is it staging. Default is False.

DEFAULT: False

skipMutationsInCis

Skip mutation in cis filter. Default is False.

DEFAULT: False

test

Testing parameter. Default is False.

DEFAULT: False

RETURNS DESCRIPTION
list

Gene panel entities

Source code in genie/database_to_staging.py
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
def stagingToCbio(
    syn,
    processingDate,
    genieVersion,
    CENTER_MAPPING_DF,
    databaseSynIdMappingDf,
    oncotree_url=None,
    consortiumReleaseCutOff=183,
    current_release_staging=False,
    skipMutationsInCis=False,
    test=False,
):
    """
    Main function that takes the GENIE database and creates release files

    Args:
        syn: Synapse object
        processingDate: Processing date in form of Apr-XXXX
        genieVersion: GENIE version. Default is test.
        CENTER_MAPPING_DF: center mapping dataframe
        databaseSynIdMappingDf: Database to Synapse Id mapping
        oncotree_url: Oncotree link
        consortiumReleaseCutOff: Release cut off days
        current_release_staging: Is it staging. Default is False.
        skipMutationsInCis: Skip mutation in cis filter. Default is False.
        test: Testing parameter. Default is False.

    Returns:
        list: Gene panel entities
    """
    if not os.path.exists(GENIE_RELEASE_DIR):
        os.mkdir(GENIE_RELEASE_DIR)
    consortiumReleaseSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "consortium"
    ][0]
    centerMafFileViewSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "centerMafView"
    ][0]
    patientSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "patient"
    ][0]
    sampleSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "sample"
    ][0]
    bedSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "bed"
    ][0]
    fileviewSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "fileview"
    ][0]
    segSynId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "seg"
    ][0]
    variant_filtering_synId = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "mutationsInCis"
    ][0]
    sv_synid = databaseSynIdMappingDf["Id"][databaseSynIdMappingDf["Database"] == "sv"][
        0
    ]
    clinical_tier_release_scope_synid = databaseSynIdMappingDf["Id"][
        databaseSynIdMappingDf["Database"] == "clinical_tier_release_scope"
    ][0]
    # Grab assay information
    assay_info_ind = databaseSynIdMappingDf["Database"] == "assayinfo"
    assay_info_synid = databaseSynIdMappingDf["Id"][assay_info_ind][0]

    # Using center mapping df to gate centers in release fileStage
    center_query_str = "','".join(CENTER_MAPPING_DF.center)
    patient_snapshot = syn.create_snapshot_version(patientSynId, comment=genieVersion)
    patient_used = f"{patientSynId}.{patient_snapshot}"
    patientDf = extract.get_syntabledf(
        syn, f"SELECT * FROM {patientSynId} where CENTER in ('{center_query_str}')"
    )
    sample_snapshot = syn.create_snapshot_version(sampleSynId, comment=genieVersion)
    sample_used = f"{sampleSynId}.{sample_snapshot}"
    sampleDf = extract.get_syntabledf(
        syn, f"SELECT * FROM {sampleSynId} where CENTER in ('{center_query_str}')"
    )
    bed_snapshot = syn.create_snapshot_version(bedSynId, comment=genieVersion)
    bed_used = f"{bedSynId}.{bed_snapshot}"
    bedDf = extract.get_syntabledf(
        syn,
        "SELECT Chromosome,Start_Position,End_Position,Hugo_Symbol,ID,"
        "SEQ_ASSAY_ID,Feature_Type,includeInPanel,clinicalReported FROM"
        f" {bedSynId} where CENTER in ('{center_query_str}')",
    )

    # Clinical release scope filter
    # If private -> Don't release to public
    clinicalReleaseScopeDf = extract.get_syntabledf(
        syn,
        f"SELECT * FROM {clinical_tier_release_scope_synid} where releaseScope <> 'private'",
    )

    patientCols = clinicalReleaseScopeDf["fieldName"][
        clinicalReleaseScopeDf["level"] == "patient"
    ].tolist()
    sampleCols = clinicalReleaseScopeDf["fieldName"][
        clinicalReleaseScopeDf["level"] == "sample"
    ].tolist()

    # Remove this when these columns are removed from both databases
    if sampleDf.get("AGE_AT_SEQ_REPORT_NUMERICAL") is not None:
        del sampleDf["AGE_AT_SEQ_REPORT_NUMERICAL"]
    del sampleDf["CENTER"]
    # Remove this when these columns are removed from both databases
    if patientDf.get("BIRTH_YEAR_NUMERICAL") is not None:
        del patientDf["BIRTH_YEAR_NUMERICAL"]
    # del patientDf['BIRTH_YEAR_NUMERICAL']

    totalSample = ["PATIENT_ID"]
    totalSample.extend(sampleCols)
    sampleCols = totalSample
    # Make sure to only grab samples that have patient information
    sampleDf = sampleDf[sampleDf["PATIENT_ID"].isin(patientDf["PATIENT_ID"])]
    clinicalDf = sampleDf.merge(patientDf, on="PATIENT_ID", how="outer")
    # Remove patients without any sample or patient ids
    clinicalDf = clinicalDf[~clinicalDf["SAMPLE_ID"].isnull()]
    clinicalDf = clinicalDf[~clinicalDf["PATIENT_ID"].isnull()]

    (
        remove_mafInBed_variants,
        removeForMergedConsortiumSamples,
        removeForCenterConsortiumSamples,
        flagged_mutationInCis_variants,
    ) = run_genie_filters(
        syn,
        genieVersion,
        variant_filtering_synId,
        clinicalDf,
        bedDf,
        CENTER_MAPPING_DF,
        processingDate,
        skipMutationsInCis,
        consortiumReleaseCutOff,
        test,
    )

    (
        clinicalDf,
        keepForCenterConsortiumSamples,
        keepForMergedConsortiumSamples,
    ) = store_clinical_files(
        syn,
        genieVersion,
        clinicalDf,
        oncotree_url,
        sampleCols,
        patientCols,
        removeForCenterConsortiumSamples,
        removeForMergedConsortiumSamples,
        consortiumReleaseSynId,
        current_release_staging,
        CENTER_MAPPING_DF,
        databaseSynIdMappingDf,
        used=[sample_used, patient_used],
    )

    assert not clinicalDf["SAMPLE_ID"].duplicated().any()

    store_maf_files(
        syn,
        genieVersion,
        centerMafFileViewSynId,
        consortiumReleaseSynId,
        clinicalDf[["SAMPLE_ID", "CENTER"]],
        CENTER_MAPPING_DF,
        keepForMergedConsortiumSamples,
        keepForCenterConsortiumSamples,
        remove_mafInBed_variants,
        flagged_mutationInCis_variants,
        current_release_staging,
    )

    cnaSamples = store_cna_files(
        syn,
        centerMafFileViewSynId,
        keepForCenterConsortiumSamples,
        keepForMergedConsortiumSamples,
        CENTER_MAPPING_DF,
        genieVersion,
        consortiumReleaseSynId,
        current_release_staging,
    )

    wes_panelids = store_assay_info_files(
        syn, genieVersion, assay_info_synid, clinicalDf, consortiumReleaseSynId
    )

    data_gene_matrix = store_data_gene_matrix(
        syn, genieVersion, clinicalDf, cnaSamples, consortiumReleaseSynId, wes_panelids
    )

    genePanelEntities = store_gene_panel_files(
        syn,
        fileviewSynId,
        genieVersion,
        data_gene_matrix,
        consortiumReleaseSynId,
        wes_panelids,
    )

    store_sv_files(
        syn,
        consortiumReleaseSynId,
        genieVersion,
        sv_synid,
        keepForCenterConsortiumSamples,
        keepForMergedConsortiumSamples,
        current_release_staging,
        CENTER_MAPPING_DF,
    )

    store_seg_files(
        syn,
        genieVersion,
        segSynId,
        consortiumReleaseSynId,
        keepForCenterConsortiumSamples,
        keepForMergedConsortiumSamples,
        CENTER_MAPPING_DF,
        current_release_staging,
    )

    store_bed_files(
        syn,
        genieVersion,
        bedDf,
        clinicalDf["SEQ_ASSAY_ID"].unique(),
        CENTER_MAPPING_DF,
        current_release_staging,
        consortiumReleaseSynId,
        used=bed_used,
    )

    return genePanelEntities

revise_metadata_files(syn, consortiumid, genie_version=None)

Rewrite metadata files with the correct GENIE version

PARAMETER DESCRIPTION
syn

Synapse object

consortiumid

Synapse id of consortium release folder

genie_version

GENIE version, Default to None

DEFAULT: None

Source code in genie/database_to_staging.py
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
def revise_metadata_files(syn, consortiumid, genie_version=None):
    """
    Rewrite metadata files with the correct GENIE version

    Args:
        syn: Synapse object
        consortiumid: Synapse id of consortium release folder
        genie_version: GENIE version, Default to None
    """
    release_files = syn.getChildren(consortiumid)
    meta_file_ents = [
        syn.get(
            i["id"], downloadLocation=GENIE_RELEASE_DIR, ifcollision="overwrite.local"
        )
        for i in release_files
        if "meta" in i["name"] and i["name"] != "meta_fusions.txt"
    ]

    for meta_ent in meta_file_ents:
        with open(meta_ent.path, "r+") as meta:
            meta_text = meta.read()
            if "meta_study" not in meta_ent.path:
                version = ""
            else:
                version = re.search(".+GENIE.+v(.+)", meta_text).group(1)
            # Fix this line
            genie_version = version if genie_version is None else genie_version

            if version != genie_version:
                meta_text = meta_text.replace(
                    "GENIE Cohort v{}".format(version),
                    "GENIE Cohort v{}".format(genie_version),
                )

                meta_text = meta_text.replace(
                    "GENIE v{}".format(version), "GENIE v{}".format(genie_version)
                )

                meta.seek(0)
                meta.write(meta_text)
                meta.truncate()
        load.store_file(
            syn=syn,
            filepath=meta_ent.path,
            parentid=consortiumid,
            version_comment=genie_version,
        )

search_or_create_folder(syn, parentid, folder_name)

Searches for an existing Synapse Folder given a parent id and creates the Synapse folder if it doesn't exist

PARAMETER DESCRIPTION
syn

Synapse connection

TYPE: Synapse

parentid

Synapse Id of a project or folder

TYPE: str

folder_name

Folde rname

TYPE: str

RETURNS DESCRIPTION
str

Synapse Folder id

TYPE: str

Source code in genie/database_to_staging.py
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
def search_or_create_folder(
    syn: synapseclient.Synapse, parentid: str, folder_name: str
) -> str:
    """
    Searches for an existing Synapse Folder given a parent id
    and creates the Synapse folder if it doesn't exist

    Args:
        syn (synapseclient.Synapse): Synapse connection
        parentid (str): Synapse Id of a project or folder
        folder_name (str): Folde rname

    Returns:
        str: Synapse Folder id
    """
    folder_id = syn.findEntityId(name=folder_name, parent=parentid)
    # if case_lists doesn't exist
    if folder_id is None:
        folder_ent = synapseclient.Folder(name=folder_name, parent=parentid)
        folder_id = syn.store(folder_ent).id
    return folder_id

Create release links from the actual entity and version

TODO: Refactor to use fileviews

PARAMETER DESCRIPTION
syn

Synapse object

genie_version

GENIE version number

case_list_entities

Case list entities

gene_panel_entities

Gene panel entities

database_synid_mappingdf

dataframe containing database to synapse id mapping

release_type

'consortium' or 'public' release

DEFAULT: 'consortium'

Source code in genie/database_to_staging.py
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
def create_link_version(
    syn,
    genie_version,
    case_list_entities,
    gene_panel_entities,
    database_synid_mappingdf,
    release_type="consortium",
):
    """
    Create release links from the actual entity and version

    TODO: Refactor to use fileviews

    Args:
        syn: Synapse object
        genie_version: GENIE version number
        case_list_entities: Case list entities
        gene_panel_entities: Gene panel entities
        database_synid_mappingdf: dataframe containing database to
                                  synapse id mapping
        release_type: 'consortium' or 'public' release
    """
    # Grab major release numbers (ie 1,2,3 ...)
    major_release = genie_version.split(".")[0]
    all_releases_synid = database_synid_mappingdf["Id"][
        database_synid_mappingdf["Database"] == "release"
    ].values[0]
    # Create major release folder
    major_release_folder_synid = search_or_create_folder(
        syn, all_releases_synid, f"Release {major_release}"
    )
    # If the major release folder didn't exist, go ahead and create the
    # release folder
    release_folder_synid = search_or_create_folder(
        syn, major_release_folder_synid, genie_version
    )
    # Search or create case lists folder
    caselist_folder_synid = search_or_create_folder(
        syn, release_folder_synid, "case_lists"
    )

    # caselistId = findCaseListId(syn, release_folder_synid)
    consortium_synid = database_synid_mappingdf["Id"][
        database_synid_mappingdf["Database"] == release_type
    ].values[0]
    consortium_release_files = syn.getChildren(consortium_synid)

    for release_file in consortium_release_files:
        not_folder = release_file["type"] != "org.sagebionetworks.repo.model.Folder"
        # data_clinical.txt MUST be pulled in when doing consortium release
        not_public = (
            release_file["name"] != "data_clinical.txt" or release_type == "consortium"
        )
        is_gene_panel = release_file["name"].startswith("data_gene_panel")
        is_deprecated_file = release_file["name"] in ["data_fusions.txt"]

        if not_folder and not_public and not is_gene_panel and not is_deprecated_file:
            syn.store(
                synapseclient.Link(
                    release_file["id"],
                    parent=release_folder_synid,
                    targetVersion=release_file["versionNumber"],
                )
            )

    release_files = syn.getChildren(release_folder_synid)
    clinical_ent = [
        ents["id"] for ents in release_files if ents["name"] == "data_clinical.txt"
    ]
    if clinical_ent:
        # Set private permission for the data_clinical.txt link
        syn.setPermissions(clinical_ent[0], principalId=3326313, accessType=[])

    for ents in case_list_entities:
        syn.store(
            synapseclient.Link(
                ents.id, parent=caselist_folder_synid, targetVersion=ents.versionNumber
            )
        )

    # Store gene panels
    for ents in gene_panel_entities:
        syn.store(
            synapseclient.Link(
                ents.id, parent=release_folder_synid, targetVersion=ents.versionNumber
            )
        )

    return {
        "release_folder": release_folder_synid,
        "caselist_folder": caselist_folder_synid,
    }